

Versuchsergebnisse aus Bayern 2015

Sortenversuch WINTERWEIZEN Malzqualität

Ergebnisse aus Versuchen in Zusammenarbeit mit den Landwirtschaftsämtern

Herausgeber: Bayerische Landesanstalt für Landwirtschaft Institut für Pflanzenbau und Pflanzenzüchtung

Am Gereuth 8, 85354 Freising

Autoren: L. Hartl, U. Nickl, G. Henkelmann

Kontakt: Tel: 08161/71-3814, Fax: 08161/71-4085

Email: lorenz.hartl@LfL.bayern.de

0

Versuch 102

Sortenversuch zur Beurteilung der Mälzungseigenschaften

Inhaltsverzeichnis

Inhaltsverzeichnis	2
Allgemeine Hinweise	3
Beschreibung der untersuchten Parameter und angewandten Untersuchungsmethoden	
Geprüfte Sorten/Stämme 2015	5
Mälzungseigenschaften, Sorten und Orte, Ernte 2015	
Mälzungseigenschaften, Sorten und Jahre, Erntejahre 2013 - 2015	9
Signifikanz der Mittelwertunterschiede Erntejahre 2013 - 2015	10

Allgemeine Hinweise

Aus den bayerischen Landessortenversuchen werden jährlich Proben vermälzt und die Malzqualitätsparameter bestimmt. Ausgewählt werden Sorten, deren bisher bekannte Eigenschaften eine Brauweizen-Eignung erwarten lassen. Sorten mit sehr hohem Proteingehalt oder mit unterdurchschnittlicher Fusariumresistenz werden nur ausnahmsweise miteinbezogen.

Der Extraktgehalt und der Endvergärungsgrad sind besonders hoch gewichtet, da sie wesentlich die Ausbeute im Sudhaus bestimmen. Eine niedrige Viskosität ist wichtig, um das Abläutern der Maische in angemessener Zeit durchführen zu können. Die Eiweißlösung sollte sich im mittleren bis leicht überdurchschnittlichen Bereich bewegen. Grundsätzlich erscheinen B- und C-Weizensorten aufgrund des meist geringeren Eiweißgehaltes geeigneter als Brauweizen. Durch die detaillierten Analysen zeigt sich aber, dass unabhängig von der Backqualitätszuordnung einige Sorten mit besonderer Eignung herausragen.

Entscheidend ist ein niedriger Rohproteingehalt. Der Rohproteingehalt des Brauweizens sollte bei 12% (bei 11% mit Umrechnungsfaktor 5,7) sehr niedrig sein, um im Bier eine optimale Geschmacksausprägung zu erreichen. Außerdem ist der wertbestimmende Extraktgehalt negativ mit dem Rohproteingehalt korreliert, so dass die Mälzer schon aus diesem Grund einen möglichst geringen Rohproteingehalt anstreben.

Rohproteinangaben sind zwischen Malz- und Backgetreide verschieden. Die Mälzer und Brauer wenden auch für Weizen den bei Braugerste üblichen Umrechungsfaktor von 6,25 für die Berechnung des Rohproteins bezogen auf den Stickstoffgehalt der Ernteware an. Da das Weizenprotein mehr Stickstoff enthält als jenes der anderen Getreidearten, wird für Backweizen der Faktor 5,7 verwendet, sodass die Angaben mit dem "Backweizenfaktor" um ca. 1% niedriger ausfallen.

Die abschließende Gesamtbewertung der Malzqualität und eine Indexbildung wird zurzeit nicht durchgeführt, da die Vergleichssorte Batis nicht mehr im Sortiment ist. Die Gewichtung der verschiedenen Qualitätsparameter befindet sich im Rahmen eines Forschungsvorhabens an der TU München in Überprüfung.

Beschreibung der untersuchten Parameter und angewandten Untersuchungsmethoden

Eiweißgehalt

Die Höhe des Eiweißgehaltes (= Stickstoff x 6.25) hängt im Wesentlichen von den Umweltfaktoren, produktionstechnischen Maßnahmen und schließlich in geringerem Maße auch von der Sorte ab. Der N-Gehalt spielt für die Malz- und Bierherstellung eine bedeutende Rolle.

Löslicher Stickstoff und Eiweißlösungsgrad

Die proteolytische Lösung beziffert die in der Würze in Lösung gegangene Stickstoffmenge. Der N-Gehalt in der Würze ist abhängig vom Rohproteingehalt des Malzes, der genotypischen Lösungsfähigkeit und vom Mälzungs- und Maischverfahren. Der lösliche Stickstoff beeinflusst die Bierqualität und den technischen Ablauf im Brauprozess. Einerseits ist eine gewisse Menge von löslichem Stickstoff – insbesondere mit niedermolekularen Eiweißverbindungen – notwendig, die für eine ausreichende Ernährung der Hefe sorgen und damit einen ungestörten Ablauf der Hauptgärung ohne Bildung unerwünschter Gärungsnebenprodukte garantieren

soll, andererseits können höhermolekulare Eiweißverbindungen die Filtrierbarkeit und Stabilität des Bieres beeinträchtigen.

Die proteolytische Lösung wird durch die Ermittlung des löslichen Stickstoffes in der Laborwürze, hergestellt nach dem Kongress-Maischverfahren, gemessen und auf die Malztrockensubstanz (in mg/100g MTS) umgerechnet. Die Bestimmung des löslichen Stickstoffes erfolgt, wie beim Rohprotein, nach der Kjehldahl-Methode.

Der Eiweißlösungsgrad sollte sich im mittleren Bereich bewegen.

Viskosität

Die Viskosität der Kongresswürze deutet ebenfalls auf die enzymatische Lösung des Malzes hin und kennzeichnet vorrangig die cytolytische Lösung. Die Aussage umfasst den Abbau der Hemicellulosen und Gummikörper zu niedermolekularen Verbindungen. Dabei wird die Wirkung der Endo-ß-Glucanasen dargestellt. Der ermittelte Wert gibt Hinweise auf die zu erwartende Läuterzeit im Sudhaus und die Schaumhaltbarkeit und Stabilität des Bieres.

Eine geringe Viskosität ist positiv zu beurteilen.

Extrakt

Die Extraktergiebigkeit des Malzes, die nach der sogenannten Kongressmaischmethode ermittelt wird (Laboratoriumsausbeute), ist eines der wichtigsten Untersuchungsmerkmale. Die Bestimmung erfolgt nach einem standardisierten Maischverfahren. Die Messung des Extraktes wird in Form einer Dichtebestimmung an der aus dem Maischprozess gewonnenen Malzwürze durchgeführt. Sie umfasst die Summe aller Bestandteile, die beim Maischen in Lösung gegangen sind. An dieser Malzwürze werden außerdem folgende Analysenwerte ermittelt: Vergärbarer Extrakt (= Endvergärungsgrad), Farbe und Klarheit der filtrierten Würze, pH-Wert, Viskosität und der lösliche Stickstoff (ELG = Eiweißlösungsgrad).

Endvergärungsgrad

Der Endvergärungsgrad, ermittelt an der Kongresswürze, dient der Untersuchung des Stärkeabbaues. Es handelt sich dabei um eine vereinfachte Methode zur Bestimmung des vergärbaren Extraktes (= Zucker), ausgedrückt in % des Gesamtextraktes der Würze. Der ermittelte Wert ist insgesamt ein Ausdruck der amylolytischen Enzymaktivität. Alle Lösungsmerkmale des Malzes sind i. d. R. gut mit der Endvergärung korreliert.

Geprüfte Sorten/Stämme 2015

Kenn-	Sortenname/							
Nr.	Sorten-	Qualität	zugelassen	Züchter / Vertrieb				
BSA	bezeichnung		seit					
LSV Haup	otsortiment							
3580	Julius	А	2008	KWS Lochow GmbH, Bergen				
4560	RGT Reform	Α	2014	Firma R2n S.A.S., Rodez Cedex, Frankreich / R.A.G.T				
4733	Benchmark	В	2015	Dr. Peter Franck Pflanzenzucht Oberlimpurg, Schwäbisch Hall / IG-Pflanzenzucht				
4727	Bonanza	В	2015	W. von Borries-Eckendorf GmbH & Co., Leopoldshöhe / KWS Lochow GmbH				
4401	Desamo	В	2013	Syngenta Seeds GmbH, Bad Salzuflen				
4734	Faustus	В	2015	Strube, Söllingen / Saaten-Union				
4589	Johnny	В	2014	SECOBRA Saatzucht GmbH, Moosburg / BayWa				
4276	KWS Ferrum*	В	2012	KWS Lochow GmbH, Bergen				
4423	Rumor	В	2013	Strube, Söllingen / Saaten-Union				
4257	Elixer	С	2012	W. von Borries-Eckendorf GmbH & Co., Leopoldshöhe / Saaten Union				
4456	Landsknecht	C_{K}	2013	SECOBRA Saatzucht GmbH, Moosburg / BayWa				
Wertprüfu	ung							
4760	STRU 04760			Strube, Söllingen				
4845	SECO 04845			SECOBRA Saatzucht GmbH, Moosburg				
4875	ISZ 04875			Intersaatzucht GmbH & Co. KG, München				
4876	SUR 04876			Saaten Union Recherche SARL, Frankreich				
4889	SEJT 04889			Sejet Planteforaedling, Dänemark				
4893	LMGN 04893			Limagrain, Edemissen				
4897	LMGN 04897			Limagrain, Edemissen				
4902	LMGN 04902			Limagrain, Edemissen				
4905	BREN 04905			Saatzucht J. Breun GmbH, Herzogenaurach				
4909	STNG 04909			Saatzucht Streng GmbH& Co. KG, Uffenheim				
4919	STRU 04919			Strube, Söllingen				
4922	STRU 04922			Strube, Söllingen				
4935	LOCH 04935			KWS Lochow GmbH, Bergen				

^{*2015} an zwei Standorten vorhanden, deswegen nur in der mehrjährigen Verrechnung berücksichtigt

Mälzungseigenschaften, Sorten und Orte, Ernte 2015

Sorte	Anz. Orte	Extrakt- gehalt	Endver- gärungs- grad	Eiweiß- gehalt N * 6,25	Eiweiß- lösungs- grad	Farbe EBC	Viskosität	Lösl. N	pH-Wert	freier alpha Amino- stickstoff	ß-Glucan
	n	%	%	%	%		mPas	mg/100 g TS		mg/l	mg/l
Sorten aus dem LS	V Haupts	sortiment									
A Julius	7	79,7	78,5	13,6	27,7	5,8*	1,82	655	6,20	103	34
A RGT Reform	7	79,8	79,4	13,4	26,4	5,5*	2,09	621	6,22	87	26
B Benchmark	7	81,3	79,9	12,3	29,0	5,2	1,77	624	6,21	97	28
B Bonanza	7	81,8	80,7	12,5	35,4	5,3	1,58	772	6,21	136	23
B Desamo	7	78,5	79,6	13,5	25,2	4,9	1,82	596	6,21	101	33
B Faustus	7	80,7	79,6	12,5	26,9	5,0	1,85	591	6,23	93	30
B Johnny	7	81,6	79,7	12,7	30,6	5,4	1,86	678	6,20	108	29
B Rumor	7	81,5	79,4	12,3	30,0	5,5	1,84	646	6,21	107	26
C Elixer	7	80,8	80,8	12,7	29,2	5,2	1,79	644	6,20	108	26
C _K Landsknecht	7	81,3	79,2	12,0	31,2	5,5	1,74	656	6,21	109	29
Mittel Gesamt		81,1	79,8	12,7	30,2	5,2	1,82	672	6,19	107	27

Berechnung mit Ismeans

^{*}geringere Anzahl Versuchswerte

Mälzungseigenschaften, Sorten und Orte, Ernte 2015 - Fortsetzung

Sorte	Anz. Orte	Extrakt- gehalt	Endver- gärungs- grad	Eiweiß- gehalt N * 6,25	Eiweiß- lösungs- grad	Farbe EBC	Viskosität	Lösl. N	pH-Wert	freier alpha Amino- stickstoff	ß-Glucan
	n	%	%	%	%		mPas	mg/100 g TS		mg/l	mg/l
Stämme aus der LSV	/ Wertpr	üfung									
STRU 04760	5	81,0	80,2	13,3	29,7	5,7	1,83	691	6,25	108	25
SECO 04845	5	80,7	79,6	12,9	32,3	4,8	1,95	728	6,22	105	30
ISZ 04875	5	82,4	80,2	12,2	29,9	5,4	1,87	636	6,22	106	25
SUR 04876	5	81,9	79,9	12,9	32,3	5,0	1,82	726	6,22	121	31
SEJT 04889	5	82,3	80,2	12,1	31,5	5,1*	1,83	667	6,20	108	25
LMGN 04893	5	82,6	80,1	12,1	33,1	5,4	1,79	694	6,21	116	26
LMGN 04897	5	80,5	79,5	13,7	27,8	5,2	1,68	666	6,19	102	20
LMGN 04902	5	80,6	80,3	12,6	33,8	5,8	1,72	745	6,17	105	29
BREN 04905	5	81,9	80,4	12,5	30,3	6,0	1,79	661	6,15	117	27
STNG 04909	5	82,5	78,7	13,2	33,8	4,6	1,71	773	6,16	127	28
STRU 04919	5	81,2	79,3	12,3	28,9	5,1	1,84	623	6,20	101	26
STRU 04922	5	79,7	79,1	13,4	29,8	4,5	2,06	698	6,23	88	26
LOCH 04935	5	81,7	80,1	12,5	30,6	5,1	1,84	663	5,75	110	22
Mittel Gesamt		81,1	79,8	12,7	30,2	5,2	1,82	672	6,19	107	27

Berechnung mit Ismeans

^{*}geringere Anzahl Versuchswerte

Mälzungseigenschaften, Sorten und Orte, Ernte 2015 - Fortsetzung

Ort	Anz. Sorten	Extrakt- gehalt	Endver- gärungs- grad	Eiweiß- gehalt N * 6.25	Eiweiß- lösungs- grad	Farbe EBC	Viskosität	Lösl. N	pH-Wert	freier alpha Amino- stickstoff	ß-Glucan
	n	%	%	%	%		mPas	mg/100 g TS		mg/l	mg/l
Kirchseeon WP	23	82,7	80,5	11,0	34,2	5,7*	1,69	660	6,18	107	25
Reith	10	81,2	79,4	14,0	30,3	5,7	1,88	736	6,16	112	26
Feistenaich	10	80,2	79,3	13,4	27,8	4,9	1,89	649	6,17	98	29
Köfering WP	23	81,4	79,6	12,3	29,4	5,2*	1,87	634	6,20	104	30
Greimersdorf WP	23	80,5	79,9	13,0	29,6	4,8	1,75	673	6,17	105	25
Giebelstadt WP	23	80,8	80,0	12,6	29,0	4,9	1,90	639	6,27	106	29
Günzburg WP	23	81,2	79,5	12,9	31,4	5,5*	1,77	713	6,16	118	25
Mittel Gesamt		81,1	79,8	12,7	30,2	5,2	1,82	672	6,19	107	27

Berechnung mit Ismeans
*geringere Anzahl Versuchswerte

WP Orte mit Wertprüfung

Mälzungseigenschaften, Sorten und Jahre, Erntejahre 2013 - 2015

Sorte	Anz. Versuche	Extrakt- gehalt	Endver- gärungs grad	Eiweiß- gehalt N * 6,25	Eiweiß- lösungs grad	Farbe EBC	Viskosi- tät	Lösl. N	pH-Wert	freier alpha Amino- stickstoff
	n	%	%	%	%		mPas	mg/100 g TS		mg/l
Bewertung nach zwei	und drei Prü	fjahren								
A Julius	14	82,3	80,0	12,6	34,9	5,6*	1,72	733	6,14	118
B Desamo	14	81,2	80,5	12,8	28,8	4,5	1,78	623	6,19	103
B Johnny	14	83,8	80,2	12,3	36,0	5,3*	1,80	744	6,13	118
B KWS Ferrum	16	83,0	79,3	12,0	33,0	4,8	1,81	670	6,15	113
B Rumor	21	83,7	80,2	12,0	34,2	5,2*	1,73	696	6,15	113
C Elixer	21	83,4	81,1	12,0	33,7	5,0*	1,74	683	6,16	110
C _K Landsknecht	21	84,0	80,1	11,4	37,1	5,1*	1,70	713	6,16	118
Bewertung nach einer	n Prüfjahr									
A RGT Reform	7	82,3	80,2	12,8	31,4	5,3*	2,03	670	6,17	93
B Benchmark	10	83,8	80,7	11,6	34,7	4,9	1,71	676	6,17	105
B Bonanza	10	84,3	81,3	11,9	39,1	5,2	1,57	791	6,17	138
B Faustus	10	83,0	80,3	12,0	31,9	4,8	1,79	640	6,19	97
Mittel		83,2	80,3	12,1	34,1	5,1	1,76	695	6,16	112

Berechnung mit Ismeans (sorte*umwelt)
*geringere Anzahl Versuchswerte

Signifikanz der Mittelwertunterschiede Erntejahre 2013 - 2015

Auswertung für Merkmal: Extraktgehalt

Auswertung	iur ivierkmai: L	=Xtra	aktge	nait
Sorte	Mittelwert %			
Bonanza	84,3		Α	
Landsknecht	83,9		Α	
Benchmark	83,8	В	Α	
Johnny	83,8	В	Α	
Rumor	83,6	В	Α	
Elixer	83,3	В	Α	С
Faustus	82,9	В		C
KWS Ferrum	82,9	В		С
Julius	82,3			С
RGT Reform	82,2		D	С
Desamo	81,2		D	
	•			

Desamo | 81,2 | D | signifikant unterschiedlich bei paarweisem Vergleich: (Elixer, Julius)

Auswertung für Merkmal: Endvergärungsgrad

Sorte	Mittelwert %			
Bonanza	81,4		Α	
Elixer	81,2	В	Α	
Benchmark	80,7	В	Α	С
Desamo	80,6	В	Α	С
Faustus	80,3	В		C
Rumor	80,3	В		С
Johnny	80,3	В		O
RGT Reform	80,2	В	D	С
Landsknecht	80,2		D	С
Julius	80,1		D	С
KWS Ferrum	79,4		D	

signifikant unterschiedlich bei paarweisem Vergleich: (Elixer,Rumor), (Elixer,Johnny), (Landsknecht,KWS

LS-Mittelwerte mit gleichen Buchstaben sind nicht signifikant verschieden, α <0,5

Auswertung für Merkmal: Eiweißgehalt

Sorte	Mittelwert %			
RGT Reform	12,9		Α	
Desamo	12,8		Α	
Julius	12,7		Α	
Johnny	12,3	В	Α	
Elixer	12,1	В	С	
KWS Ferrum	12,1	В	С	
Rumor	12,1	В	С	
Faustus	12,0	В	С	D
Bonanza	11,9	В	С	D
Benchmark	11,6		С	D
Landsknecht	11,5			D

Signifikanz der Mittelwertunterschiede Erntejahre 2013 – 2015 - Fortsetzung

Auswertung für Merkmal: Eiweißlösungsgrad

				<u></u>	.
Sorte	Mittelwert %				
Bonanza	39,1			Α	
Landsknecht	37,1	В		Α	
Johnny	35,9	В		С	
Julius	34,8	В		С	D
Benchmark	34,7	В	Ε	С	D
Rumor	34,2		Е	С	D
Elixer	33,7		Е	С	D
KWS Ferrum	32,9		Ε		D
Faustus	31,8		Е		
RGT Reform	31,4		Ε	F	
Desamo	28,8			F	

Auswertung für Merkmal: Lösl. Stickstoff

Auswerlung für Werkinal. Losi. Suckston								
Sorte	Mittelwert							
Bonanza	792			Α				
Johnny	744	В		Α				
Julius	733	В		С				
Landsknecht	713	В		С	D			
Rumor	696	Ε		С	D			
Elixer	684	Ε		F	D			
Benchmark	677	Ε		F	D			
RGT Reform	670	Ε	G	F	D			
KWS Ferrum	670	Ε	G	F				
Faustus	641		G	F				
Desamo	623		G					

Auswertung für Merkmal: Farbe

Auswertung für Mentmal. Tarbe									
Sorte	Mittelwert								
Julius	5,6		Α						
RGT Reform	5,3	В	Α						
Johnny	5,2	В	Α						
Rumor	5,2	В	Α						
Bonanza	5,1	В	Α						
Landsknecht	5,1	В	Α						
Elixer	5,0	В	С						
Benchmark	4,9	В	С						
KWS Ferrum	4,8	В	С						
Faustus	4,7	В	С						
Desamo	4,5		С						

Auswertung für Merkmal: pH-Wert

- 12.2 1. 2.							
Sorte	Mittelwert						
Desamo	6,19		Α				
Faustus	6,19	В	Α				
RGT Reform	6,17	В	Α	С			
Benchmark	6,17	В	Α	С			
Bonanza	6,17	В	Α	С			
Elixer	6,16	В	Α	С			
Landsknecht	6,16	В	Α	С			
KWS Ferrum	6,15	В	Α	С			
Rumor	6,15	В		С			
Julius	6,13			С			
Johnny	6,13			С			

Auswertung für Merkmal: Viskosität

D
D
D
D
D
D

Auswertung für Merkmal: freier a Aminostickstoff

Sorte	Mittelwert			
Bonanza	138		Α	
Johnny	118		В	
Landsknecht	118		В	
Julius	118	С	В	
Rumor	113	С	В	D
KWS Ferrum	113	С	В	D
Elixer	111	С	В	D
Benchmark	106	С	Е	D
Desamo	104		Е	D
Faustus	97		Е	
RGT Reform	93		Е	

LS-Mittelwerte mit gleichen Buchstaben sind nicht signifikant verschieden, α <0,5

Ernte 2013 - 2015